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The Generalized Uncertainty Principle (GUP) is a modification of the Heisenberg’s Uncertainty
Principle predicted by several theories of quantum gravity. In this work, we compute GUP cor-
rections to the well known Jaynes-Cummings Model (JCM) with the aim of eventually observing
quantum gravity effects in quantum optical systems. To this end, we first analytically solve the
GUP-corrected JCM and obtain the corrected Rabi frequency in the quadratic GUP model. Fol-
lowing this, we calculate the effects of a dispersive interaction with light in a coherent state, and
show that this gives rise to photon-added coherent states that were first studied in [1]. The latter
causes a change in the value of the Wigner function, which if detected in the laboratory, would in
effect be a signature of quantum gravity.

I. INTRODUCTION

A successful theory of quantum gravity (QG), consis-
tent with both general relativity and quantum mechan-
ics and capable of making testable predictions continues
to elude us. Furthermore, one normally expects quan-
tum gravitational effects to play a role at or near the
Planck scale (∼ 1016TeV), which is way beyond the max-
imum energies accessible in accelerators, namely the elec-
troweak scale (∼ 1 TeV). While this makes it practically
impossible to test candidate theories of QG, there is no
a priori reason to assume that no QG effects would be
present, albeit indirectly, in the 15 orders of magnitude
intervening between the Planck and electroweak scales.
A common feature of various QG theories is the exis-
tence of a minimal measurable length. This results in
an effective modification of the Heisenberg Uncertainty
Principle (HUP) to the so-called the Generalized Uncer-
tainty Principle (GUP), which in turn gives rise to QG
terms in practically all quantum Hamiltonians. This has
given rise to many GUP-based phenomenological models,
which have been used predict QG effects in low-energy
quantum systems [2–9]. Various experimental tests based
on these models have been proposed using quantum opto-
mechanical interactions [10, 11], gravitational bar detec-
tors [12], nano-diamond interferometry [13], and direct
measurements on a macroscopic harmonic oscillator [14].
In this work, we study the implications of these models
on the light-atom interaction using the Jaynes-Cummings
Model (JCM) [15]. Since its advent in 1963 by Edwin
Jaynes and Fred Cummings, the JCM has been adapted
and applied to multiple areas of physics. This exactly
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solvable model forms an important component in quan-
tum optics [16], many-body physics [17], quantum com-
puting [18], and quantum simulation [19] (see [20] for an
extensive review of the applications of the JCM). Ex-
perimentally, it can be realized most naturally through
a cavity quantum electrodynamic or an ion-trap setup.
The pervasiveness of this model throughout theory and
experiments in quantum mechanics provides the motiva-
tion for us to look into its GUP modifications. To the
best of our knowledge, this is the first time that this study
is being done.
We start with the GUP expressed as a modified com-
mutation relation between position and its canonically
conjugate momentum of the form [21]

[q̂, p̂] = ~
[
1− 2δγ′p̂+ 4εγ′2p̂2

]
. (1)

In the above, (q̂, p̂) are the usual position and momen-
tum operators, γ′ = γ0/MPlc with MPl being the Planck
mass, and γ0 is a free parameter. Unlike in [22], we do
not assume γ0 ∼ 1, and leave it for experiments to deter-
mine its value. δ and ε are independent parameters that
parametrize the magnitude of the linear and quadratic in
momentum corrections in eq.(1) above. They are typi-
cally of O(1) and produce some well-known GUP models.
For instance, δ = 0 and ε = 1/4 gives rise to the model
used in [23]. Following the quantization of the electro-
magnetic field, we derive corrections to the JCM Hamil-
tonian. We note here that the effects due to the linear
GUP (LGUP) corrections (that typically dominate the
quadratic corrections) may be neglected in comparison
with the quadratic GUP (QGUP) corrections. As we will
discuss further, this happens once we make the Rotating
Wave Approximation (RWA). The detailed justification
is given in the appendix A. We solve the resultant QGUP
JCM and obtain the modified Rabi frequency, which we
note is too small to be measured. Following this, we show
that a dispersive interaction of the atom with the light
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field in a coherent state gives rise to photon-added coher-
ent states for time scales comparable to the duration of
standard low-energy quantum optical experiments. We
then discuss the possibility of probing these states by
measuring the change in the Wigner function demon-
strating the possibility of detecting GUP/QG effects in
the near-future. Towards the end, we summarize our re-
sults and discuss implications.
This paper is organized as follows: In section II, we
briefly review the quantization of the electromagnetic
field and the JCM while setting up the notation from
[16]. In section III, we compute the Rabi frequency for
the QG-corrected JCM. In section IV, we solve for an in-
teraction with large detuning — a parameter that decides
the amplitude and frequency of the Rabi oscillations in
the JCM. We then comment on the experimental viabil-
ity of our results and briefly discuss a way to potentially
detect GUP/QG effects. In section V, we summarize our
results and discuss the broader implications of our work.

II. REVIEW AND SETUP OF THE STANDARD
JCM

Following [16], we write the operator form for the elec-
tric and magnetic fields of a single mode as

Êx(z, t) =

(
2ω2

V ε0

)1/2

q̂(t) sin(kz) (2)

B̂y(z, t) =

(
µ0ε0
k

)(
2ω2

V ε0

)1/2

p̂(t) cos(kz) (3)

where q̂(t) and p̂(t) capture the time-dependence of the
electric and magnetic fields respectively, ω is the angular
frequency and k = ω/c is the wave number. The constant
V is the “effective volume” of the cavity in which the field
is confined, and ε0 and µ0 refer to the usual permittivity
and permeability constants in vacuum.
The Hamiltonian of the system, namely

H =
1

2

∫
dV

[
ε0E

2
x(z, t) +

1

µ0
B2
y(z, t)

]
, (4)

can be re-written using Eqs.(2) and (3) as

Ĥ =
1

2

(
p̂2 + ω2q̂2). (5)

In the case of the quantum harmonic oscillator, q̂ and
p̂ are the canonical position and momentum operators
where normally (in the absence of QG corrections), the
standard commutation relation [q̂, p̂] = i~ is used. Here,
the electric and magnetic fields play the role of canonical
position and momentum respectively. Analogous to the
harmonic oscillator, one then defines annihilation (â) and

creation (â†) operators as follows1

â =

√
1

2~ω
(ωq̂ + ip̂) (6)

â† =

√
1

2~ω
(ωq̂ − ip̂) (7)

such that [â, â†] = 1. Consequently, the electric and mag-
netic field operators and the Hamiltonian become

Êx(z, t) = E0(â+ â†) sin(kz) (8)

B̂y(z, t) =
B0

i
(â− â†) cos(kz) (9)

Ĥ = ~ω
(
â†â+

1

2

)
(10)

where E0 = (~ω/ε0V )1/2 and B0 = (µ0/k)(ε0~ω3/V )1/2

signify the electric and magnetic field per quanta.
As is well-known, the JCM is a fully quantum mechanical
model of interaction of a single-mode of light with a two-
level atom based on the above formalism (see [24] for a
review of the model). We review the basic formalism and
notations here. Let us consider a two-level atom with lev-
els |e〉 and |g〉 interacting with a single-mode light field of
the form (8), except now we consider an arbitrary polar-
ization vector e instead of one along the x direction. The
JCM interaction Hamiltonian is then given by a simple
dipole term

ĤI = −d̂.Ê = d̂g(â+ â†) (11)

where d̂ = d̂.e and g = −(~ω/ε0V )1/2 sin(kz).
Following [16], we can introduce the atomic transition
operators

σ̂+ = |e〉 〈g| , σ̂− = |g〉 〈e| (12)

and the inversion operator,

σ̂3 = |e〉 〈e| − |g〉 〈g| . (13)

It is easy to check that [σ̂+, σ̂−] = σ̂3 and [σ̂3, σ̂±] = 2σ̂±.
Furthermore, from parity considerations, we see that

the diagonal elements of the dipole operator 〈e| d̂ |e〉 =

〈g| d̂ |g〉 = 0, implying

d̂ = d |g〉 〈e|+ d∗ |e〉 〈g| (14)

= d(σ̂− + σ̂+) (15)

where we write 〈e| d̂ |g〉 = d, which can be assumed to
be real without loss of generality [16]. Using the above

1 We omit the subscript k signifying the mode in ak(a
†
k) since we

work with only a single-mode of light
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results, we can finally write the total Hamiltonian for the
JCM as

Ĥ = ĤA + ĤF + ĤI (16)

=
1

2
~ω0σ̂3 + ~ωâ†â+ ~λ(σ̂+ + σ̂−)(â+ â†) (17)

where ĤA is the free atomic Hamiltonian with energy
levels Ee and Eg, ĤF is the free-field Hamiltonian, and
λ = dg/~ captures the interaction strength between the
atom and the field. The energy levels of the atom are
Ee = −Eg = (1/2)~ω0.

III. CORRECTIONS TO THE JCM AND
SOLUTION WITH QGUP

In this section, we consider the GUP model defined
by equation (1) and compute corrections to the Hamilto-
nian and the Rabi frequency for the interaction around
resonance. Note that the dimension of p̂ (from (6)) is√

Energy whereas that of q̂ (from (7)) is
√

Energy×Time.
In order to impose GUP on the quantized electric and
magnetic fields, which play the role of q̂ and p̂ respec-
tively, we take the following ansatz from [22] (with rede-
fined constants),

[q, p] = i~ (1− 2δγp+ 4εγ2p2) (18)

where2

γ =
γ0√
MPlc

(19)

and γ0 is a free dimensionless parameter whose values
may be fixed through experiments. It can be seen from
Eqs.(18) and (19) that the GUP terms become important
when γ0p/

√
MPlc ' 1. Associating p with an energy

scale E and length scale L such that p '
√
E (from

equations (6) and (7)) and E ' ~c/L, we see that

γ0p√
MPlc

' 1 =⇒
√
γ2

0 lPl
L
' 1, (20)

where we have used
√
MPlc =

√
lPl/~c. The above equa-

tion thereby sets a length scale for the GUP in (18) as
γ2

0 lPl. The energy scale E can be associated with the
frequency ω of the electromagnetic wave. Consequently,
the length scale L is set by the wavelength of the elec-
tromagnetic wave where ω and L can be related with
ω ' 2πc/L.
Since this length scale L has not been observed in any ex-
periment as yet, the best upper bounds can be imposed
on it from the electroweak length scale lw ∼ 10−18 m,

2 γ here was denoted as γEM in [22].

which is the minimum length scale probed so far by any
(high energy) experiment.
This length scale naturally sets the bound γ0 ≤ 108 (us-

ing (20)). Additionally, note that γ = γ0/(M
1/2
p c) =

γ0/(4.4 × 104) in SI units. This sets the bound on γ
as γ ≤ 103. On the other hand, if we take γ0 = 1 as-
suming the perturbation to be effective at the Planck-
scale, this would imply a lower bound on γ as well with
O(γ) ≥ 10−5. These bounds will help us estimate bounds
on the measurable parameters in the coming sections.
With the GUP defined in (18), we can use the results
from [21] to study the corrections to the JCM. From [21],
the GUP modified free light-field Hamiltonian has eigen-
states that we denote by |ñ〉. The GUP altered raising
and lowering operators are denoted by ã and ã†. Their
action on the eigenstates |ñ〉 is same as that of the stan-
dard â and â† on |n〉. Additionally, the operator q̂ has
a GUP dependent correction when written in terms of ã
and ã†. Using this we write the modified electric field as

Ê = e

(
2ω2

V ε0

)1/2

sin(kz)

[
(ã+ã†)

√
~

2ω
−2i(ã†2−ã2)

δ~γ
2

−{(ã3+ã†3)(2δ2+ε)+(ãÑ+Ñ ã†)(3δ2−2ε)}~
√

~ω
2
γ2

]
.

(21)

Following similar steps as from (11) to obtain the inter-
action term in (16), the above electric field alters the
interaction term introduced in (11) to

ĤI = ~λ(σ̂− + σ̂+)

[
(ã+ ã†)− i

√
2~ωδγ(ã†2 − ã2)

− ~ωγ2{(ã3 + ã†3)(2δ2 + ε) + (ãÑ + Ñ ã†)(3δ2 − 2ε)}
]
(22)

where λ = dg/~, and σ̂± are the atomic transition oper-
ators defined in the previous section.

Next, we make the Rotating Wave Approximation
(RWA) [16]. This means that certain terms which vary
rapidly can be neglected as they average out to 0 around
resonance (ω ≈ ω0). Specifically, we consider the terms

σ̂+ã ∼ eit(ω0−ω) (23)

σ̂−ã
† ∼ e−it(ω0−ω) (24)

σ̂+ã
† ∼ eit(ω0+ω) (25)

σ̂−ã ∼ e−it(ω0+ω) . (26)

Since the last two terms vary rapidly in comparison to the
first two, they can be safely neglected. Another way to
see this is by integrating the time-dependent Schrödinger
equation which leads to terms with factors (ω0+ω)−1 and
(ω0 − ω)−1. Around resonance, the term with the factor
of (ω0 + ω)−1 is neglected.
In this approximation, we can additionally neglect terms
from the Hamiltonian (22) that are quadratic and cubic
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in ã (ã†) in addition to the already neglected terms in
equation (25) and (26). With this, we see that only the
last term of the Hamiltonian (22) with the QGUP param-
eter γ2 remains and LGUP corrections can be neglected.

However, note that the parameter γ can be small, in
which case two things need to be clarified. First, the con-
tribution from terms (25) and (26) is not small compared
to terms in the Hamiltonian that contain the GUP factors
γ, and thereby cannot be neglected under the RWA. Sec-
ondly, it is not clear whether the smallness that results
from the rapidly varying factor σ̂+ã

2 (σ̂−ã
†2) is sufficient

to negate the smallness due to the extra γ factor in the
last term with the slowly varying factor σ̂+ãÑ (σ̂−Ñ ã

†)
from (22). Noting these potential two caveats, we con-
tinue with this application of the RWA and neglect the
terms that are quadratic and cubic in ã (ã†), in addition
to the terms (25) and (26), and fully justify our approx-
imation in appendix A, where we show that there exist
reasonable experimental regimes for which this approxi-
mation can clearly be made. Finally, note that the other
terms with the γ2 factor such as σ+ã

3 vary rapidly, give
a tiny contribution in comparison to the other terms and
can be safely neglected.
Next, in addition to the above, we see that the free light-
field Hamiltonian is also modified under GUP [21] as

ĤF = ~ω
[(
Ñ+

1

2

)
−~ω

2
γ2{4(Ñ2+Ñ)(δ2−ε)+δ2−2ε}

]
.

(27)
This completes the GUP corrections we wish to incorpo-
rate in the Hamiltonian. After the modification of elec-
tromagnetic field dependent parts (16) of the Hamilto-
nian and making the RWA, the JCM Hamiltonian can
be written as

Ĥ =
1

2
~ω0σ̂3 + ~ω

[
Ñ − {4(Ñ2 + Ñ)χ+ β}

]
+

~λ{σ̂+(ã− ãÑφ) + σ̂−(ã† − ã†(Ñ + 1)φ)} (28)

where

φ = ~ωγ2(3δ2 − 2ε) (29)

χ = (~ωγ2/2)(δ2 − ε) (30)

β = (~ωγ2/2)(δ2 − 2ε) (31)

with 8χ = φ+ 2β 3.
With the above Hamiltonian in place, we now proceed

to solve it. Since there are only linear terms in ã(ã†)

modulo factors of Ñ , the subspace of possible state vec-
tors is restricted to |e, ñ〉 and

∣∣g, ˜n+ 1
〉
. Thus, we begin

by considering a general state of the atom-light field as

|ψ(t)〉 = Ce,n(t) |e, ñ〉+ Cg,n+1(t)
∣∣g, ˜n+ 1

〉
(32)

3 Strictly speaking, these parameters are not independent. We
introduce them to make it easier to work with, and give the
Hamiltonian a more useful form.

with the initial state as |ψ(0)〉 = |e, ñ〉. By solving the
Schrödinger equation for the above system assuming ∆ =
ω0 − ω ≈ 0, we evaluate Ce,n(t) and Cg,n+1(t) up to
O(φ)(O(γ2)) as

Ce.n(t) = cos(ΩQG(n) t)

[
1− 2(n+ 1)φ− 4

√
n+ 1 χ

ω

λ

]
(33)

Cg,n+1(t) = −i sin(ΩQG(n) t)
[
1− 2(n+ 1)φ

]
(34)

where

ΩQG(n) = λ
√
n+ 1

[
1− (n+ 1)φ

]
. (35)

Note that for χ = φ = γ = 0, (33) and (34) give the
solutions of the standard JCM. With the GUP modified
JCM solved, we can now calculate that atomic inversion
as

W (t) = |Ce,n|2 − |Cg,n+1|2 (36)

= cos(2ΩQG(n)t) (upto O(γ2)) (37)

which gives the Rabi frequency as

ΩQG(n) = Ω(n)(1− (n+ 1)φ) (38)

where Ω(n) = 2λ
√
n+ 1 is the standard Rabi fre-

quency without the GUP corrections, obtained when we
set the GUP dependent term φ = 0 in the above. For
a GUP perturbation at the electroweak scale, ω = 1016

Hz, and n = 1, the change in the Rabi frequency due
to GUP effects is ∼ 10−12 Hz. This change is extremely
small to be measured. Nevertheless, we now proceed to
study a different variation of the JCM, in which we argue
that experimental detection of GUP effects is potentially
achievable in the near future.

IV. QGUP CORRECTED JCM WITH LARGE
DETUNING

We consider the case of large detuning in the QGUP
corrected JCM. In the standard JCM, this is of interest
since it allows for the creation of macroscopically distin-
guishable states which are important in many fundamen-
tal tests of quantum mechanics [25, 26]. When GUP is
taken into account, the hope is that this exercise would
not only provide more insight into the quantum mechan-
ical effects of gravity, but also provide the experimental
means to test it.
We first derive an effective Hamiltonian Ĥeff for the case
of large detuning using Hamiltonian (28) as the starting
point. We arrive at the following effective Hamiltonian
as (see appendix B for details)

Ĥeff =
~λ2

∆
[Â, Â†] (39)
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where Â = σ̂+ã(Î − Ñφ), Â† = σ̂−ã
†(Î − (Ñ + Î)φ),

and the other operators are as defined in the previous
sections. Evaluating [Â, Â†] in the above equation gives
the effective Hamiltonian to be

Ĥeff = ~µ
(
σ̂3(Ñ −2Ñ2φ)+ σ̂+σ̂−(Ĩ−2φ−4Ñφ)

)
(40)

with µ = λ2/∆ having dimensions of frequency. Note
that although the GUP is not directly needed for go-
ing from equation (39) to (40), we do need it for the
derivation of (39) itself. It is now easy to compute how
the effective Hamiltonian evolves the states |e〉 |ñ〉 and
|g〉
∣∣ ˜n+ 1

〉
. As in the standard JCM case, these do not

produce any interesting effects — just overall phase fac-
tors. We begin by considering the simplest possible ini-
tial state of the light-atom system with the light field in
a coherent state, namely, |ψ(0)〉 = |g〉 |α̃〉 where |α̃〉 are
GUP modified coherent states as defined in [21]. At a
time t > 0, this state evolves as

|ψ(t)〉 = e−iĤefft/~ |ψ(0)〉 (41)

= e−|α|
2/2

∞∑
n=0

αn√
n!
eiµt(n−2n2φ) |g〉 |ñ〉 (42)

= e−|α|
2/2

∞∑
n=0

(αeiµt)n√
n!

e−2iµtn2φ |g〉 |ñ〉 . (43)

In case of 〈(ã†ã)2〉2φµt � 1, e−2iµtn2φ can be suitably
Taylor expanded to O(φ). Assuming O(|α|) = 1, this can
be done as long as t� 1/(φµ). For µ = 105 and ω = 1014

Hz, we require t� 1024s when the GUP perturbation is
at Planck scale, and t � 108s if the GUP perturbations
start taking effect at the electroweak scale. In either case,
these times are much higher than the duration for which
the experiments are carried out. Thus, we can safely work
with the linear term of the Taylor expansion. Expanding
the above equation up to O(φ) using n |ñ〉 = ã†ã |ñ〉 and
ã |α̃〉 = α |α̃〉, we obtain

|ψ(t)〉 =
1

N

(
|g〉
∣∣α̃eiµt〉− i2αφµteiµt(ã†

+ αeiµtã†2) |g〉
∣∣α̃eiµt〉), (44)

where N is a normalization factor we have put in by
hand. The above state has a part where the creation
operator operates on a coherent state. Accordingly, the
resultant states are analogous to the photon added coher-
ent states that were first proposed by Agarwal and Tara
in 1991 [1]. For m photon additions to a coherent state,
the resultant photon added coherent state is denoted as
|α,m〉 with the appropriate normalization factor. Since
we have GUP corrected operators and states in our case,
we can similarly define GUP modified photon-added co-
herent states |α̃, m̃〉 as

|α̃, m̃〉 =
ã†m |α̃〉

(〈α̃| ãmã†m |α̃〉)1/2
(45)

where 〈α̃| ãmã†m |α̃〉 = Lm(−|α|2)m!, Lm(x) being the
Laguerre polynomial of order m. With the above defini-
tion, equation (44) can be written as

|ψ(t)〉 =
1

N

(
|g〉
∣∣α̃eiµt〉− i2αφµt

×
(
eiµtkα,1 |g〉

∣∣α̃eiµt, 1̃〉+ e2iµtαkα,2 |g〉
∣∣α̃eiµt, 2̃〉 )),

(46)

where we have used the notation kα,m =

(Lm(−|α|2)m!)1/2. Similarly, for the initial state of
|ψ(0)〉 = |e〉 |α̃〉, |ψ(t)〉 for t > 0 becomes

|ψ(t)〉 =
1

N

(
e−iµt(1 + i2φµt) |e〉

∣∣α̃e−iµt〉
+ i2φµαt

(
3kα,1e

−2iµt |e〉
∣∣α̃e−iµt, 1̃〉

+ αkα,2e
−3iµt |e〉

∣∣α̃e−iµt, 2̃〉 )). (47)

The above expressions (46) and (47) constitute the
key results of our work. They suggest that the effect
of the GUP on coherent states is that of a multi-photon
medium giving rise to photon added or excited coherent
states. This photon addition to the coherent states in
(46) and (47) changes the quasi-classical coherent state
into a state with non-classical properties. The smaller the
amplitude of the initial coherent state |α|, the higher the
non-classicality of the excited coherent state

∣∣α̃, 1̃〉. Fur-
thermore, these states do not exhibit gaussian statistics
in their field quadratures and are termed as non-gaussian
states.

These states have been of recent interest because of
their use in quantum technologies. For instance, it has
been shown that they are necessary to implement a uni-
versal continuous variable quantum computer [27]. It
is also argued that these states are required to achieve
a quantum computational advantage [28]. Furthermore,
non-gaussian states are indispensable in the implemen-
tation of various quantum-information theoretic proto-
cols such as entanglement distillation [29] (see [30] for a
detailed review on non-gaussian states). However, non-
gaussian states are notoriously hard to produce and come
with many practical problems [30]. The fact that QG ef-
fects might naturally give rise to these states is encourag-
ing and it is therefore in our interest to probe the states
we obtain in equations (46) and (47).One way to do this
is to reconstruct its Wigner function.
The Wigner function is a phase space representation of a
quantum state given by a quasi-probability distribution
and contains complete information about the state. It
was first given by E. Wigner in 1932 [31] and first mea-
sured by Smithey et al. in 1993 using optical homodyne
tomography [32]. For quantum states that have no classi-
cal analog, the Wigner function takes on negative values,
which have also been measured in experiments [33]. In
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FIG. 1: Difference between the Wigner function of the
state (46) with

γ = 103, |α| = 1, µ = 105 Hz, t = 103 s, ω = 1015 Hz and
that of a standard coherent state with |α| = 1

fact, non-gaussian states are commonly characterized by
the negativity of their Wigner function4[34].
As far as pure photon-added coherent states are con-
cerned, they were first generated by Zavatta et al. (2004)
through parametric down-conversion [35]. Using bal-
anced homodyne detection, they were able to completely
characterize the states by quantum tomography and
demonstrate the negativity of the Wigner function. In
2007, Zavatta et al. [36] further reported the realiza-
tion of single-photon-added thermal light states. In this
work, they reported negative values of the Wigner func-
tion as high as of the order of −10−2 Hz·J−1. Note that
these experiments were purely optical and involved no
light-matter interaction. Additionally, as an alternative
to homodyne detection that requires one to make a se-
ries of measurements, photon-number resolving detectors
could instead be used to directly measure the Wigner
function [37, 38]. However, to the best of the authors’
knowledge, this has never been done for photon-added
coherent states.
In line with these experimental techniques and standards,
we propose testing the production of photon-added co-
herent states in (46) by detecting the change in value of
the Wigner function from that of the standard coherent
states that are typically produced in place of (46). By
recognizing that the change in the Wigner function is of
O(αφµt) (see (46)), we estimate the change in the value
of the Wigner function (see figure 1) to be ∼ 10−4 Hz·J−1

for γ = 103 (electroweak scale), assuming the same val-
ues for the other parameters as given in figure 1. Pre-
cision measurement required to measure this, say at the

4 It may be noted that the negativity of Wigner function is not a
necessary condition for non-classicality. For instance, in the case
of the states in (46), the Wigner function is positive everywhere
due to the dominating contribution from

∣∣α̃eiµt〉. Nonetheless,
the whole state is clearly not classical due to the presence of the
photon-added coherent states.

electroweak scale is ∆W(z)/W(z) ≈ 10−4/10−1 = 10−3,
where ∆W(z) is the change in the value of the Wigner
function due to GUP corrections. Experiments in the
past have achieved precision within an error of ∼ 10−2

[39–41]. Therefore, establishing the proposed change in
the Wigner function should be possible in the near future,
thereby making it feasible to test the GUP. If these states
are detected, it would indicate an intermediate length
scale (of γ2

0 lPl) at which QG effects manifest. However,
in case the states are not observed in the experiments,
this method of implementing the JCM for large detun-
ing would be useful to put improved bounds on the GUP
parameter γ.

V. DISCUSSION AND OUTLOOK

In this work, we estimated potentially measurable QG
signatures in quantum optical systems. To this end, we
have studied GUP effects in the JCM. Using the GUP
model in [21], we began by computing the GUP cor-
rected Hamiltonian. In the process, we found terms in
the Hamiltonian that were quadratic and cubic in the
annihilation and creation operators. We were able to
neglect these terms at resonance by making the RWA
(see Appendix A for details). We noted that the re-
sultant interaction Hamiltonian (28) did not have any
LGUP terms since the LGUP factor γ exclusively cou-
pled to ã2 and ã†2, which were neglected in the process
of making the RWA. This happens because ã2 and ã†2

terms give rise to non-energy conserving processes (such
as |e, ñ〉 −→

∣∣g, ˜n+ 2
〉
) leading to small coefficients of the

resulting wave function. Moreover, this smallness exceeds
the smallness from the extra GUP factor in γ2 and thus
can be ignored in comparison to the QGUP term we fi-
nally obtain in the interaction part of Hamiltonian (28).
After solving the obtained GUP-corrected Hamiltonian,
we found the modified Rabi frequency to O(γ2). The
change in the Rabi frequency due to GUP turned out
to be extremely small to be measurable. Interestingly,
on solving the JCM for the case of large detuning, we
found that photon-added coherent states are created for
short but experimentally feasible times. We evaluated
the change in the value of the Wigner function of the re-
sultant state (46) from that of a standard coherent state
to be ∼ 10−4 Hz· J −1 for a GUP perturbation at the elec-
troweak scale. The required precision to make this mea-
surement is calculated to be about 10−3. Noting that the
recent experiments have made measurements within an
error of ∼ 10−2, we showed that being able to measure
this change will potentially test the GUP and thereby
estimate QG effects in the future. This would also be a
strong piece of evidence in favour of the existence of an
intermediate length scale at which QG effects manifest.
On the other hand, if these effects are smaller than we
estimate, this would help narrow down the range of pos-
sible values for the GUP parameter γ, as experimental
accuracies improve. Either way, our results would pro-
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vide useful information in the formulation and testing
of QG theories. By providing methods for manipulation
of a two-level system (or a qubit) using light, the JCM
forms a link between quantum optics and quantum in-
formation theory. Jaynes Cummings-based models have
been used to implement various quantum computing al-
gorithms and quantum information-based protocols [18].
Our work extends this utility of the JCM by showing the
possibility of creating photon-added coherent states, that
can further be used to implement various quantum com-
puting and information protocols. Similar claims were
presented in [42], where the authors argue that optical in-
teractions in the presence of QG lead to non-gaussianity.
In our work we have demonstrated this explicitly by es-
tablishing an interesting link between QG and photon-
added coherent states, which to the best of the authors
knowledge, was not demonstrated earlier.

However, the question of whether this connection is
useful is deeper and requires more sophisticated tools for
answering, possibly from candidate theories of QG.
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Appendix A: Full JCM Hamiltonian - Perturbative
Treatment

In the calculations done in sections III and IV, we have
neglected the quadratic and cubic terms (in ã (ã†)) in
(22) by making use of the RWA. We have also neglected
the terms (25) and (26) for the same reason. However, as
stated towards the end of the section III, it is not obvi-
ous per se whether making the RWA is justified. In this
appendix, we test the validity of the RWA by comparing
the contributions from relevant terms in the Hamilto-
nian. For this, we begin by considering the full interac-
tion Hamiltonian (22). We drop the term proportional
to γ2ã3†(ã3) since these can anyway be safely neglected
as pointed out in section III. Our resultant Hamiltonian
then becomes

ĤI = ~λ[σ̂+{ã† + ã− φãÑ + ξã2}+
σ̂−{ã+ ã† − φã†(Ñ + 1)− ξã†2}]. (A1)

where we have defined ξ = iδγ
√

2~ω. In the above Hamil-
tonian, φ denotes QGUP corrections whereas ξ denotes
LGUP corrections. The terms that we need to account
for are those that are proportional to σ̂+ã

† (σ̂−ã), and
terms that are quadratic in the annihilation and cre-
ation operators. Note that the latter are precisely the
terms linear in the GUP parameter γ. Therefore, show-
ing that the contribution of the terms that are quadratic
in ã(ã†) is small automatically justifies our restriction to

the QGUP model. Since an analytic solution is not easily
found, we assume the interaction strength λ to be small
and perform a perturbative study of the dynamics of the
system. We begin by assuming the initial state to be
|ψ(0)〉 = |e〉 |n〉. Up to first order in λ, a general ansatz
for |ψ(t)〉 can be written as [43],

|ψ(t)〉 = C
(1)
g,n−1(t) |g〉 |n− 1〉 e−Eg,n−1

it
~ +

C(1)
e,n(t) |e〉 |n〉 e−Ee,n

it
~ + C

(1)
g,n+1(t) |g〉 |n+ 1〉 e−Eg,n+1

it
~

+ C
(1)
g,n+2(t) |g〉 |n+ 2〉 e−Eg,n+2

it
~ (A2)

where {Ee,n, Eg,n} and {Ce,n, Cg,n} denote the energies
and amplitudes of the states {|e, n〉 , |g, n〉} respectively.
The amplitudes can be calculated using standard first-
order perturbation theory.

Since there is no transition from |e〉 |n〉 −→ |e〉 |n〉 via an

intermediate state (to first order in λ), we have C
(1)
e,n(t) =

0. Evaluating the other amplitudes to O(λ) gives:

C
(1)
g,n−1(t) = λ

√
n
e−i(ω+ω0)t − 1

ω + ω0
(A3)

C
(1)
g,n+1(t) = −λ

√
(n+ 1)

(
1− (n+ 1)φ

)(
ei(ω−ω0)t − 1

ω − ω0

)
(A4)

C
(1)
g,n+2(t) = λξ

√
(n+ 1)(n+ 2)

(
ei(2ω−ω0)t − 1

2ω − ω0

)
.

(A5)

As can be seen, the RHS of the above equations have a
number of parameters, namely ω, ω0, γ, δ, ε, and, λ. It is
instructive to compare the contribution of various terms
by assuming a range of operational values for the param-
eters. To do this, it is first useful to take the absolute val-
ues of time averages of the expressions (A3)-(A5), where
we denote the averages by an overbar. This gives∣∣∣C(1)

g,n−1(t)
∣∣∣ = λ

√
n

ω + ω0
(A6)∣∣∣C(1)

g,n+1(t)
∣∣∣ =λ

(√
(n+ 1)−

(n+ 1)3/2~ωγ2(3δ2 − 2ε)

)
1

ω − ω0

(A7)

∣∣∣C(1)
g,n+2(t)

∣∣∣ = λδγ
√

2~ω
√

(n+ 1)(n+ 2)

(
1

2ω − ω0

)
(A8)

where we have expanded ξ and φ. In equation (A7), we
note that only the second term is of interest to us since
that is the part with the relevant GUP factor. We denote

this term as T2(C
(1)
g,n+1(t)). The first term signifies the

emission of a photon in the standard JCM and is not
relevant for the purposes of this comparison. We weigh
the contribution of various terms by taking the ratios of



8

the above expressions. To this end, we define

ζLQ =

∣∣∣C(1)
g,n+2(t)

∣∣∣
T2(C

(1)
g,n+1(t))

(A9)

and

ζRQ =

∣∣∣C(1)
g,n−1(t)

∣∣∣
T2(C

(1)
g,n+1(t))

. (A10)

ζLQ signifies the ratio of strengths of the of the LGUP
to the QGUP terms, whereas ζRQ signifies the ratio of
the strengths of the terms σ̂+ã

† (σ̂−ã) (that are typically
neglected as part of the RWA in standard JCM) to the
QGUP terms. We begin by first considering ζLQ. Eval-
uating, we get

ζLQ =

√
2(n+ 2)

n+ 1

δ

3δ2 − 2ε

1

γ
√
~ω

ω − ω0

2ω − ω0
(A11)

We assume certain experimentally viable values for the
above parameters to estimate this ratio. Taking n ∈
(1, 100), γ ∈ (10−5, 103), ω0 − ω = ∆ ∈ (103, 105), ω ∈
(109, 1017), and (δ, ε) ∈ (0, 1), one can easily see that
there exist realizable values of the parameters in which
one could neglect the LGUP contribution, i.e., terms that
are quadratic in ã(ã†). For instance, if light frequencies
exceed 1016 Hz , one can always neglect the contribution
of the LGUP terms in comparison to the QGUP terms,
assuming n = 50 and δ = ε = 1 (see figure 2). However,
this true only if γ ≥ 10−1, which translates to a length
scale greater than 10−27m. If GUP takes effect at lower
length scales, our simulations show that the LGUP con-
tribution to the dynamics cannot be neglected assuming
working values of the other parameters.
Next, consider ζRQ. Evaluating, we get

ζRQ =

√
n

(n+ 1)3/2

ω − ω0

ω + ω0

1

3δ2 − 2ε

1

γ2

1

~ω
(A12)

Keeping the same range of the parameters, we find that
it is possible to find regimes wherein contributions of the
σ̂+ã

† (σ̂−ã) terms can be neglected in comparison to the
QGUP contributions. In figure 3 for instance, we see that
this can be done for light frequencies greater than 1016

Hz. However, this is only true if γ = 103, which translates
to around the electroweak length scale of about 10−18m.
If γ is below this threshold, or if GUP takes effect below
this length scale, we find that it gets increasingly diffi-
cult to find experimentally realizable regimes where this
approximation can be made.
Thus, we see that neglecting the contributions of σ̂+ã

†

(σ̂−ã) and LGUP terms to the dynamics is a reasonable
assumption after all, since this can be done for a range
of parameter values, many of which are experimentally
viable.

FIG. 2: ζLQ for n = 50, γ = 0.5, δ = 1, ε =
1 as a function of ω and ∆ = ω0 − ω

FIG. 3: ζRQ for n = 50, γ = 5× 103, δ = 1, ε =
1 as a function of ω and ∆ = ω0 − ω

Appendix B: Derivation of the Effective Action

We briefly present the derivation of the effective Hamil-
tonian for an interaction with large detuning ∆ = ω0−ω
(considering only the QGUP corrections). The derivation
closely follows the derivation in Appendix C of [16]. The
difference is that we have a few extra terms that come
into the Hamitlonian because of the GUP. We begin by
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considering the full Hamiltonian

Ĥ = Ĥ0 + ĤI (B1)

where Ĥ0 = 1
2~ω0σ̂3 + ~ω

[
Ñ − {4(Ñ2 + Ñ)χ + β}

]
is

the interaction-free Hamiltonian (from 28) and ĤI =

~λ{σ̂+(ã − ãÑφ) + σ̂−(ã† − ã†(Ñ + 1)φ)} is the inter-

acting Hamiltonian. We can write ĤI in the form

ĤI = ~λ(Â+ Â†) (B2)

where Â = σ̂+ã(1−Ñφ). Transforming to the interaction
picture (IP), the Hamiltonian is given as

ĤIP = Û−1
0 ĤÛ0 − i~Û−1

0

dÛ0

dt
(B3)

where U0 = exp(−iH0t/~). Computing this for the above
Hamiltonian, we get

ĤIP = ~λ(Âeit(∆+8nχω) + Â†e−it(∆+8χω(n+1))) (B4)

where ∆ = ω0 − ω is assumed to be large. The state
vector in the interaction picture obeys the Schrödinger
equation with the Hamiltonian HIP . The solution for
|ψIP (t)〉 can then be written as

|ψIP (t)〉 = T̂
[

exp

(
−i
~

∫ t

0

dt′ĤIP (t′)

)]
|ψIP (0)〉 (B5)

where |ψIP (t)〉 is the state-vector in the interaction pic-

ture at time t and T̂ is the time-ordering operator. Mak-
ing the perturbative expansion, we get

T̂
[

exp

(
−i
~

∫ t

0

dt′ĤIP (t′)

)]
= Î − i

~

∫ t

0

dt′ĤIP (t′)

− 1

2~2
T̂
[ ∫ t

0

dt′
∫ t

0

dt′′ĤIP (t′)ĤIP (t′′)

]
+ ... (B6)

Evaluating the above and ignoring terms that are of
(O(λ2/∆2)), we get

T̂
[

exp

(
−i
~

∫ t

0

dt′ĤIP (t′)

)]
= Î−λ

[
Â

(eit(∆+8nωχ) − 1)

∆ + 8nωχ

− Â† (e
−it(∆+8ωχ(n+1)) − 1)

∆ + 8ωχ(n+ 1)

]
− itλ2

∆
[Â, Â†] (B7)

Note that we have only kept the terms up toO(γ2)(O(χ))
in the final term above. Now, if the mean quanta in the
light-field 〈Â†Â〉1/2 is not too large and if

∣∣∣∣ λ∆ 〈Â†Â〉1/2
∣∣∣∣� 1 (B8)

due to the large detuning (∆), we can drop the second
term in equation B7. Finally, we get

T̂
[

exp

(
−i
~

∫ t

0

dt′ĤIP (t′)

)]
≈ Î − it

~
Ĥeff, (B9)

where

Ĥeff =
~λ2

∆
[Â, Â†] (B10)

is the effective Hamiltonian. Note that the above expres-
sion is well in accordance with the expression derived in
[16] if we let the GUP parameter γ (written in terms of
χ in the above expressions) to be 0.
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Kaisa Laiho, Katiúscia N Cassemiro, David Gross, and
Christine Silberhorn. Probing the negative wigner func-
tion of a pulsed single photon point by point. Physical
review letters, 105(25):253603, 2010.

[34] Anatole Kenfack and Karol Życzkowski. Negativity of
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